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Abstract—Unmanned aerial vehicle (UAV) swarm networks’
highly dynamic topology causes unstable links and routing os-
cillations during collaborative flight missions, while poor Global
Navigation Satellite System (GNSS) signals in denied environ-
ments worsen swarm coordination. This paper proposes a close-
loop communication and localization framework (CL2F) for high-
mobility UAV swarms in partial GNSS-denied environments. It
tightly co-designs a factor graph-based cooperative localization
approach, a location-aware routing mechanism, and a Deep
Deterministic Policy Gradient (DDPG)-based adaptive HELLO
interval algorithm to iteratively quantify localization reliability
and dynamically adjust communication strategies. Evaluations on
a co-simulation platform show the Al-driven framework achieves
multi-objective balance among communication overhead, local-
ization accuracy, and network responsiveness under dynamic
topology disruptions and signal interference.

Index Terms—UAV swarm network, routing protocol, cooper-
ative localization, deep reinforcement learning.

I. INTRODUCTION

The rapid growth of unmanned aerial vehicles (UAVs) has
transformed border surveillance, disaster response, and envi-
ronmental monitoring due to their agility, cost-effectiveness,
and sensor-carrying capabilities [1, 2]. UAV swarms need pre-
cise positioning and robust inter-UAV communication for col-
laborative tasks, but face severe signal degradation in Global
Navigation Satellite System (GNSS)-denied environments (e.g.,
urban canyons, forests), causing localization failures and dis-
rupted communication [3, 4].

On one hand, conventional routing protocols for stable
terrestrial networks fail to adapt to dynamic UAV topolo-
gies (high mobility, intermittent connectivity). Position-based
routing protocols can mitigate topology maintenance overhead
via geographic info for path selection. For example, an en-
hanced greedy perimeter stateless routing (GPSR) with two-
hop awareness/reinforcement learning [5] is proposed to adapt
to dynamic topologies and an optimized forwarding strategy
using a distance metric integrating channel characteristics [6]
is introduced to achieve superior packet delivery rates and
throughput. On the other hand, GNSS-dependent localization
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suffers accuracy loss/outages from obstructions/interference.
Cooperative localization (e.g., ranging-based) offers alterna-
tives, with factor graph (FG)-based methods, i.e., a distributed
FG with adaptive diffusion [7] and a weighted FG using Fisher
info/Kullback-Leibler divergence to boost reliability [8].

Moreover, recent advances focus on deep communication-
localization coupling to address inefficient resource utiliza-
tion and compromised mission reliability. For example, a
two-stage indoor localization framework combining sparse
Bayesian learning with support vector machine (SVM) spatial
classification is proposed, which demonstrates robustness in
complex electromagnetic conditions [9]. A model predictive
control framework is provided to balance solar energy har-
vesting, communication services, and autonomous localization
for UAVs [10]. To further advance this research, an air-ground
fused localization architecture is devised to optimize position-
power relationships through dynamically deployed UAV line-
of-sight links [11].

Based on the above discussions, we know that positioning
data enables intelligent routing (e.g., topology-aware path se-
lection), while reliable communication supports collaborative
localization (e.g., sharing ranging measurements). However,
existing integrated frameworks neglect real-time localization
reliability assessment and adaptive resource allocation, which
may misguide routing and reduce cooperative localization
accuracy with unstable links. This paper proposes a close-loop
communication and localization framework (CL2F) for high-
mobility UAV swarms in partial GNSS-denied environments.
Two modules are co-designed: a localization module using
weighted factor graph optimization to distributedly estimate
UAV geographic information, and a communication module
with a location-aware routing mechanism (based on estimated
positions) and a DDPG-driven algorithm to adaptively adjust
HELLO intervals for timely topology updates. Evaluated on
an NS-3/NS3-Gym/GTSAM co-simulation platform, CL2F
achieves multi-objective balance among communication over-
head, localization accuracy, and network responsiveness.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a high-mobility UAV
swarm composed of m autonomous mobile UAVs equipped
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Fig. 1. UAV swarm networks in partial GNSS-denied environments.

with GNSS receivers, denoted by U = {uq, ug, ..., un, }. Each
UAV w,; is characterized by its three-dimensional position
Xi(t) = (x;(t),yi(t), z:(t)) and velocity vector V;(t) =
(vg,i(t), vy,:(t), v, :(t)) at time slot ¢. Specifically, we assume
that the majority of UAVs (highlighted in black) struck in
a GNSS-denied region (highlighted in gray) and only those
UAVs outside the region (highlighted in red) can receive GNSS
positioning signals and therefore have satellite positioning
capabilities. To ensure the regular flight missions, the UAV
swarm forms a self-organizing wireless network and perform
cooperative localization to overcome the partial GNSS-denied
environments.

A. UAV Mobility Model
The UAV dynamics follow a Gaussian-Markov mobility

model formulated through the temporally correlated velocity
update equation:

W(t—Fl) :O[V;‘(t)—F(l—Oé)MU—FO'UV 1_a2Wi(t)7 (1)
where o € [0,1] denotes the memory factor governing ve-
locity persistence, (i, represents the mean velocity vector, o,
specifies the standard deviation of velocity perturbations, and
Wi(t) ~ N(0,1) indicates standard normal Gaussian noise.
Positional updates adhere to classical kinematic equations by

Xi(t+1) = X;(t) + Vi(t) At, 2
where At represents the discrete time interval.

B. Partial GNSS-Denied Model

Let X; = [z;,y:, 2;] represent the state vector of UAV i.
For satellite-positioned UAV j, the pseudorange observation
pj,c from GNSS satellites satisfies

PiG = \/(xj —xa)? + (y; —ye)® + (2 — 26)° + €56,
3)

where p;c denotes the pseudorange measurement,
[a,ya, z¢] is the corresponding UAV position obtained by
GNSS positioning signals, and £;c ~ N(0,02) represents
zero-mean Gaussian observation noise.

Additionally, relative distance observations between UAVs
are modeled through

Zij = \/(331 —x;)2+ (i —y)? + (2 —2)% +ei5, 4
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Fig. 2. The proposed close-loop communication and localization framework.

where z; ; denotes the inter-UAV distance measurement with
gij ~ N(0,032) representing ranging noise.

C. Topology Awareness Model

To activate dynamic topology awareness, UAVs periodically
broadcast HELLO packets containing operational parameters
including IP addresses, positional vectors X;(t), and velocity
vectors V;(t). Through the packet reception and parsing, each
UAV can dynamically maintain its neighbor list n;(t) = {u; €
U zi;(t) < R}, where z ;(t) = | X;(t) — X,;(t)| quantifies
the Euclidean distance between UAVs u; and u;.

The communication range threshold R. serves as an op-
timization parameter to ensure network connectivity while
eliminating those distant nodes beyond reliable communication
distances, thereby maintaining topological stability.

III. CLOSE-LOOP COMMUNICATION AND LOCALIZATION
FRAMEWORK

To address network topology dynamics and communica-
tion resource contention of high-mobility UAV swarms in
partial GNSS-denied environments, we propose a close-loop
communication and localization framework (CL2F). It syn-
ergistically integrates communication and localization via a
close-loop architecture (environmental perception, decision
control, performance feedback), as shown in Fig. 2. The
localization module uses distributed cooperative localization
to estimate UAV geographic information from sensors. The
communication module includes a routing mechanism (op-
timizing decisions with real-time geographic info) and an
adaptive HELLO interval algorithm (adjusting intervals based
on topology updates and localization performance). CL2F
achieves multi-objective balance among communication over-
head, localization accuracy, and network responsiveness.

A. Factor Graph-Based Cooperative Localization

Since each UAV relies on a cooperative approach to achieve
high-precision localization in partial GNSS-denied environ-
ments, we proposed a factor graph-based cooperative localiza-
tion algorithm. Each UAV maintains a local factor graph con-
sisting of itself and its neighboring nodes. In this way, the state
estimation of the whole UAV swarm can be further modeled
as a factor graph, which comprises multiple variable nodes
and factor nodes. The variable nodes represent the state of a



UAV and the factor nodes encode the constraint relationships
between sensor measurements and physical models, that is, the
distance factor fgs and the IMU factor fiyy. Specifically, X;
and X are two variable nodes connecting via a range-based
factor fgis, which establishes relative positional constraints:
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AV 7 and UAV j.

The temporal continuity constraint is provided by the IMU
sensor. Let Xi(t_l) and X7$t) denote the UAV state variables
at two consecutive time steps. These states are linked via the
IMU factor fiyu expressed by

fomu (X, XED) = exp ( HhIMU(X(t_l)) - X

1

2

(6)

where hpyu(X®—1) predicts the state from time ¢ — 1 to ¢
using the IMU motion model.

To improve the localization accuracy and reduce the com-
putational complexity of the distributed factor graph-based
approach, a more concise and effective local factor graph is
constructed by selectively incorporating neighboring nodes.
The credibility 7; of node ¢ is defined as its number of credible
neighbors d;. A node ¢ is considered credible if and only if

Ti:diZT, (7)

where 7 is the credibility threshold. Then, the most credible
factor nodes are selected for optimization. The state estimation
is achieved by minimizing the following multi-source fusion
objective function:
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where ||- HQRd and ||- ||2Qk represent weighted norms with weight-
ing matrices R4 and (), respectively. The w;; denotes a
weighting factor defined as

; €))

where n*(¢) is the set of credible neighbors of UAV ¢, and d,
is the degree of neighbor node j. The weight w;; reflects the
relative importance of neighbor j in the local factor graph of
node i.

The factor graph employs a message-passing algorithm
for information exchange and updates. Each variable node
propagates its state information to connected factor nodes,
which then compute new constraints based on observations
and models, feeding them back to the relevant variable nodes.
Through iterative optimization, the states of variable nodes
are progressively adjusted to satisfy all constraints, ultimately
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achieving a global/near optimal state estimation.

B. Location-Aware Routing Mechanism

Furthermore, in scenarios where data packets need to be
transmitted, a geographic routing protocol is adopted. Each
UAV selects the next-hop relay node by computing a neighbor
utility function based on its neighbor table. The routing
decision directly relies on real-time positional information
provided by the localization module. The neighbor utility
function is defined as

Uc,i(t) =wrer - frer(Xe(t), Xi(t))
+wq - LCS;(t) - fa(2i,p(t))
+wy - fo(Xc, Xi),

which consists of three key components:

(10)

1) Link Expiration Time (LET): This component evaluates
link stability by analyzing the relative motion between UAVs.
Considering the kinematic states of the current node C' and
neighbor node 7, we first establish a 3D relative motion model.

Let (a,b,¢) = (x¢ — x4,Yc — Yi,2c — 2;) denote the
relative displacement along three axes and (e, f, g) represent
the relative velocity components as follows:

e = ve cos ¢ cos oo — v; cos b; cos ¢;, (11)
f =wvesin ¢ cos pc — v; sin 6; cos ¢;, (12)
g = ve sin ¢c — v; sin ¢, (13)

where v is the velocity, 6 and ¢ are the azimuth and elevation
angles, respectively. The Euclidean distance between nodes
evolves with time ¢ can be calculated by

d(t) = /(a+et)? + (b + ft)2 + (c+ gt)?
= Vkt2 + 1t +m + R2. (14)
Here, k = €2 + f2 + 92 reflects relative speed magnitude, [ =
2(ae+bf +cg) characterizes position-velocity correlation, and
m = a®>+b>+c? — R? relates initial distance to communication

radius R.. The link breaks when d(t) = R., yielding the link
expiration time as

=1+ VI? —4km
B 2k ’
An exponential mapping converts L to a normalized stability
metric figr € (0,1):

L 15)

fuer =1—¢€". (16)

2) Neighbor Distance: This component quantifies proxim-
ity between neighbor ¢ and destination D:

fa(zi,p(t)) = min(zmine) /2,0 (t), 1), (7
where z; p is the Euclidean distance between neighbor 7 and
destination D, and zmin = min{z; p(t) | j € nc(t)} is the
minimum distance among current candidates n¢ ().

To tackle localization accuracy variations, we further in-
troduce a Localization Confidence Score (LCS) for the post-
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Fig. 3. Structure of DDPG-based adaptive HELLO interval algorithm.

localization of each UAV, that is,

1X: — X5 — 251
Z wij - exp <— 2031 s

jen* (@)

(18)
where n* (i) is the set of credible neighbors, w;; is a weight,
and oy, is the error tolerance threshold. It should be noted that
the routing weights can dynamically adjusted by introducing
the LCS factor. When localization errors increase, the routing
decision based on Eq. (10) will tend to figr and fy and
therefore the accuracy loss through link quality and geometric
consistency could be compensated.

3) Directional Consistency: This component exploits geo-
metric vector relationships and can be calculated by

Z%‘,D(t) + Z%z(t) - ZiQ,D(t)

2z¢,i(t)zc,p(t) ’
where z¢;(t) and z¢ p(t) are Euclidean distances from node
C to neighbor ¢ and destination D, respectively.

1
[0S, —
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fo(zci(t), zop(t)) = (19)

C. DDPG-Based Adaptive HELLO Interval Algorithm

The high mobility of UAV swarms increases the difficulty
of real-time routing topology updates. That is, a higher
HELLO frequency ensures timely topology updates but raises
communication overhead and energy consumption, while a
lower frequency saves resources but leads to outdated topology
information and degraded routing performance. Additionally,
HELLO frequency significantly affects the convergence speed
of factor graph-based cooperative localization and computa-
tional resource utilization. Therefore, we leverage DDPG’s
advantage in continuous action space control and propose a
DDPG-based adaptive HELLO interval algorithm to dynami-
cally optimize communication and localization performance.

The proposed algorithm comprises three core components:

« State Space: The state space S characterizes network
dynamics, with state vector s; € S defined as

St = [ni(t)> Ui(t)7 fT7 pc<t)7 S(t>7 E[Anl(tﬂ? LCSl(t)] ’
(20)
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Fig. 4. Evaluation results based on the co-simulation platform.

where n;(t) is neighbor count, v;(t) node velocity, fr
HELLO frequency, p.(t) channel busy ratio (measured via
carrier sensing), S(t) packet success rate, An;(t) neighbor
change rate, and LC'S;(t) localization reliability.

« Action Space: Continuous action space A € [—1, 1] repre-
sents HELLO interval adjustments and the Actor network
u(-) generates

ay = p(se]0") + Ny
with the range constraint
ATyprio(t + 1) = Clip (T'(¢) + at, Tmin, Tmax) - (22)

+ Reward Function: The system reward is represented by
multi-objective evaluation integrating communication and
localization:

21

Ty = —w — wape(t)+

1
T(t)
vi(t)
w;g@ . E[Am(t)] + U)4LCSZ(t) (23)
The structure of the proposed DDPG-based adaptive
HELLO interval algorithm is shown in Fig. 3. During adap-
tive HELLO interval adjustment, the UAV first observes the
current network state s;, generates an action a, via the policy
network to adjust the HELLO message interval, and subse-
quently receives the immediate reward r; and the next state
S¢+1. The transition (s¢, as, 7, S¢+1) is stored into the replay
buffer. During training, the algorithm randomly samples mini-
batches from the buffer and performs the following updates
sequentially: the Critic network optimizes the value function
estimation by minimizing the temporal difference error; the
Actor network updates its parameters using deterministic pol-
icy gradients to maximize the long-term reward; finally, a
soft update mechanism is applied to gradually synchronize the
target network parameters, ensuring training stability.

IV. EVALUATIONS

We conducts performance validation based on an NS-
3/NS3-Gym/GTSAM co-simulation platform. The experimen-



tal scenario is configured in a three-dimensional airspace with

dimensions 1000x 1000x 500 m?3, where GNSS-denied regions

are defined as {(z,vy, z)|z € [50,950] m,y € [50,950] m, z €

[0,500)m}. UAV nodes are initially deployed by uniform

random distribution and their mobility patterns are simulated

through a Markovian random walk model. The number of

UAVs is varied between 60 and 180, with average flight veloc-

ities ranging from 5 to 25 m/s. We compare five approaches

to verify the key performance:

+ GPSR routing protocol: Shorter Euclidean distances are
prioritized for greedy next-hop selection.

« BLPR routing protocol: Dynamic node characteristics (ve-
locity, distance, trajectory angle) are integrated for predictive
forwarding.

« FFLA localization algorithm: Pose rectification and UKF-
based localization are combined for nonlinear state tracking
in GNSS-denied regions.

« WFGA localization algorithm: Reliable neighbors are se-
lected via credibility metrics and least-squares optimization
are utilized for distributed factor graph localization.

« CL2F algorithm: the proposed close-loop communication-
localization framework.

As shown in Fig. 4(a), the Packet Arrival Rate (PDR) of
BLPR and the CL2F-integrated protocol first increases and
then decreases with UAV density, while GPSR continuously
declines. Both protocols use multi-dimensional optimization
incorporating geometric and stability metrics. Their perfor-
mance improves with node density, with CL2F achieving about
4% higher PDR than BLPR due to adaptive HELLO intervals.
However, excessive density causes severe interference, leading
to performance degradation in all protocols.

Fig. 4(b) illustrates the relationship between average UAV
speed and PDR. The PDR of all three protocols decreases
significantly due to rapid topological changes caused by high
mobility. The CL2F-integrated routing protocol outperforms
GPSR by incorporating a stability-aware neighbor selection
mechanism. Compared to BLPR, which evaluates link quality
based on the ratio of node distance to maximum speed, CL2F
employs a more comprehensive utility function for neighbor
assessment. Moreover, CL2F integrates a DDPG-based adap-
tive HELLO interval mechanism, enabling timely topology
updates under high mobility. Therefore, its PDR improves by
approximately 5% over BLPR in high-speed scenarios.

Fig. 4(c) shows the trend of Mean Absolute Error (MAE)
with varying numbers of UAVs. The localization error of all
three algorithms first decreases and then increases, due to
insufficient position information at low density and increased
network interference at high density. Among them, FFLA
performs worst, WFGA is relatively stable, while the CL2F-
integrated framework demonstrates stronger adaptability in
large-scale scenarios by adaptively adjusting HELLO intervals
based on network conditions, achieving approximately 22%
improvement in MAE over WFGA.

Fig. 4(d) shows when the average speed increases, the MAE
of all three algorithms rises due to reduced timeliness of
position information and increased error accumulation from

rapid topology changes. Among them, FFLA exhibits the most
significant performance degradation under high mobility, while
CL2F maintains global consistency through its factor graph
method in low-speed scenarios, performing comparably to
FFLA. Notably, in high-speed environments, CL2F demon-
strates superior adaptability thanks to its algorithm-switching
mechanism, achieving approximately 14% improvement in
MAE over WFGA.

V. CONCLUSIONS

A CL2F framework is proposed to iteratively quantify
localization reliability and dynamically adjust communication
strategies for high-mobility UAV swarm networks in partial
GNSS-denied environments. The evaluations confirm CL2F’s
robustness in maintaining connectivity and precise positioning
under dynamic topology disruptions and signal interference.
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